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Density-functional calculations and eigenchannel analyses for electron transport in Al
and Si atomic wires
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We perform first-principles calculations of the conductance of Al and Si atomic wires between jellium
electrodes using the wave-function matching method combined with the density-functional theory. The calcu-
lated conductances for single-line and double-line atomic wires exhibit rich variation depending on the detailed
atomic structure and the chemical difference between the constituent elements. The origin of the similarity and
dissimilarity between Al and Si atomic wires is unequivocally clarified by our eigenchannel analyses of the
wave functions and transmission probabilities obtained and by the calculated energy bands of the correspond-
ing infinite-length atomic wires. We also find that the conductance of single-line Al wires increases upon
stretching of the wires. This is due to peculiar features of the electron states of atomic wires consisting of group
III or group IV atoms. The result is consistent with the observed conductance of Al wires.
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I. INTRODUCTION

Recent developments in fabrication techniques such as
scanning tunneling microscope~STM! and the mechanically
controllable breaking junction~MCBJ! enable us to form
nanoscale metal contacts. Electron transport measurem
have been carried out for such contacts and ballistic trans
behaviors are usually observed.1 In those experiments, struc
tural variations during the conductance measurement usu
take place and an interesting relationship between
atomic-scale structure and the electron conductance has
discovered.

A contact made of gold offers such an example. Ohni
et al.2 formed a nanoscale gold bridge by putting a go
STM tip on the Au surface and then withdrawing the t
They observed Au bridges consisting of a few atom lin
using the transmission electron microscope~TEM!. The
TEM clarified that the bridge becomes thinner line by li
upon withdrawal. Moreover, simultaneous measuremen
the electron conductance shows clear quantization of
conductance in units ofG052e2/h and a one-to-one corre
spondence between the value of the conductance and
thickness of the nanobridge. The conductance of the thin
bridge is shown to beG0, which implies ballistic transport in
a single channel.

Aluminum nanocontacts exhibit different characteristi
Quantization of the conductance has indeed been observ
contacts fabricated using the STM and the MC
technique:3–7 The conductanceG5aG0 shows a steplike de
crease with increasing electrode distance from the contac
contrast to the gold contacts, however,a is close but not
exactly equal to an integer. More surprisingly,a increaseson
each plateau of the conductance with increasing electr
distance. The number of transmitting channels has also b
evaluated experimentally by using superconduct
contacts:5,7 It is shown that more than two channels contr
0163-1829/2004/69~4!/045401~10!/$22.50 69 0454
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ute to the transport even whenG is equal to;G0, and a
possible relation to the number of valence orbitals
speculated.7

Nanocontacts made of other metallic elements also
hibit the quantization of conductance and, moreov
element-dependent characteristics in the behavior of the
ductance associated with structural changes.3,6,7

As for theory, there are several conductance calculati
for Al wires based on density-functional theory~DFT!.8–11

Kobayashiet al. performed conductance calculations for
three-atom Al wire by the recursion-transfer matrix metho
Their eigenchannel decomposition12,13 shows that the num-
ber of relevant channels of a three-atom wire is three.9,13,14

They also proposed that the change from the bent to
straight structure causes a positive slope of the conducta
on each plateau. From a tight-binding calculation for a o
atom Al contact, Cuevaset al. found that the number o
channels is three.6 They also argued that the positive slope
due to the change of electron states caused by bond elo
tion, which contradicts the results by Kobayashiet al. Fur-
ther investigation is certainly required to clarify the origin
the positive slope on each plateau of the conductance
elongating nanocontacts.

Those experimentally observed characteristics imply
wealth of underlying physics in nanoscale contacts. Wha
the relationship among nanoscale atomic structures, elec
states, and quantum conductance? What is the role of di
ences in chemical elements in the conductance? In spit
extensive effort, a satisfactory understanding of those iss
is still missing.

In order to clarify these interesting aspects of the relati
ship between the conductance and atomic structures or
conductance and chemical species, we here carry out
ductance calculations within the density-functional sche
for prototype atomic wires consisting of Al and Si. We foc
on salient features of the conductance of the atomic wire
©2004 The American Physical Society01-1
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that geometry optimization of the structures is not pursu
here. Instead, we choose several ideal atomic wires and
clarify the effects of the atomic geometry on the condu
tance. It is found that two neighboring elements in the pe
odic table exhibit quite different characteristics in the co
ductance when they are formed into nanostructures.
found that this difference can be well understood in terms
the electronic structures of atomic wires. In particular,
origin of the exotic and surprising behaviors of Al nanowir
during elongation is naturally explained by the present c
culation.

In Sec. II, we briefly explain our calculational method
Results for single-line atomic wires are presented in S
III A, and the increase in the conductance of the Al nan
wires is explained in Sec. III B. Characteristics of t
double-line atomic wires are presented in Sec. III C. Sec
IV concludes the paper.

II. COMPUTATIONAL METHODS

Calculations are performed using density-function
theory15,16 in describing interactions among electrons and
ing the multichannel Landauer formula17 in obtaining the
conductance. The transmission probability of an elect
with a certain energy is computed by the wave-funct
matching~WFM! method.18

We consider the conductance of Al and Si atomic wi
between two semi-infinite jellium electrodes at the zero-bi
voltage limit. The jellium is specified by the parameterr s
52 a.u., which corresponds to the electron density of b
Al. Nuclei and core electrons for each atom constituting
atomic wires are represented by local pseudopotentials
rametrized for Al~Ref. 19! and Si.20 Interactions among va
lence electrons are treated in the local density approxima
~LDA !.21,22 The distance between the end atom of the w
and the jellium edge is set to be 2.6 a.u. and 2.3 a.u. fo
and Si wires, respectively. These values are adopted f
calculations for the stable geometries of adsorbed Al and
atoms on a jellium surface.23,24

First we calculate the self-consistent potentialV(r) for an
electron which is injected from the left electrode, pas
through the atomic wire, and then reaches the right electr
For that purpose, we divide the electrode-wire-electrode s
tem into three regions: the left electrode, the right electro
and the wire regions. For each region, self-consistent D
LDA calculations are performed. In these calculations we
a three-dimensional supercell model in which the wire or
electrode is placed in a large unit cell and periodic bound
conditions are imposed in three directions both parallelz)
and perpendicular (x andy) to the wire~Fig. 1!. To simulate
a single isolated wire, we take the large dimension 20 a.u
the x andy directions. The self-consistent potential obtain
in this supercell model is later used to calculate incide
reflected, and transmitted electron waves in the semi-infi
electrodes plus the finite-length atom wire. Therefore
‘‘wire region’’ should contain substantially thick electrode
connected with both end atoms of the wire. This proced
enables us to describe potential modification near electro
wire interfaces and to connect the ‘‘wire region’’ to th
04540
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‘‘electrode’’ regions smoothly. We find that an electrode wi
the thickness of 13 a.u. at both sides of the wire in the ‘‘w
region’’ is sufficient for the procedure. The Kohn-Sham o
bitals and thus the electron density are expanded usin
plane-wave basis set with cutoff energy of 4.0 Ry and 6.0
for Al and Si, respectively. The Brillouin zone integration
done byG point sampling.

The self-consistent potentials in the three regions
smoothly connected and constitute the potentialV(r) for an
injected electron@Fig. 1~b!#. The wave functionCk for each
electron with a certain incident energyE is written as

Ck55
ck1 (

k8PL

r k8kck8 ~in left electrode region!,

(
n

ancn ~in wire region!,

(
k8PR

tk8kck8 ~in right electrode region!,

~1!

where L (R) represents the states moving leftward~right-
ward!, and thecn’s are linearly independent solutions of th
Kohn-Sham equation. The coefficientsr k8k ,an , andtk8k are
determined by the boundary condition that the wave funct
and its derivative are continuous at the region boundaries
each region of Eq.~1!, the WFM method18 is used to solve
the Kohn-Sham equation, as is explained below.

In the xy plane we still use the large periodic cell t
simulate an isolated wire connected to electrodes. The w
functions and the self-consistent potential are then Fou
transformed by introducing two-dimensional reciprocal ve
tors G' . The number ofG' is taken so as to be consiste
with the plane-wave cutoff energies that are employed
calculate the self-consistent potentialV(r).

Along the z direction, we introduce the real-space me
$zn%. The mesh spacingdz[zn112zn should be sufficiently

FIG. 1. Supercell model used for the self-consistent poten
calculation in~a! the electrode and~c! the wire regions.~b! The
potential of an atomic wire between two semi-infinite electrod
consists of the potentials generated for each region. Note tha
cells are also periodic in the direction perpendicular to the wire
1-2
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DENSITY-FUNCTIONAL CALCULATIONS AND . . . PHYSICAL REVIEW B69, 045401 ~2004!
small and the self-consistent potentialV(r) is assumed to be
z independent in each slab of thicknessdz: i.e., the potential
V(r) is discretized and regarded as a set ofz-independent
potentials$Vn(r')%. We examined the convergence of th
mesh spacing, anddz50.45 and 0.37 a.u. are found to b
sufficient for Al and Si, respectively.

The Kohn-Sham equation in the three-dimensional r
space is thus converted to linear equations in theG' space
for each slabn. Within a slab, analytic expressions for a
propagating and evanescent waves are obtained and the
connected smoothly to the expressions in adjacent slab
the electrode region, the periodic boundary condition is
plied in the z direction. As a result of this, complex ban
structures with possible imaginary wave numbers appear.
every propagating Bloch wave with real wave numberk
coming to the wire region, the wave function is calculated
as to connect the incident, reflected, and transmitted wa
smoothly. We then finally obtain the transmission probabi
tk8k from the computed wave function~1!.

Finally, the conductance is calculated by the multichan
Landauer formula. For an incident electron with energyE,
the conductanceG(E) is written as

G~E!5G0Tr@ t~E!†t~E!#, ~2!

wheret(E)[$tk8k% is the transmission matrix. In the exper
ments,G(E) at the Fermi energyEF is measured when th
bias voltage is close to zero. It is shown that there is a uni
transformationU which diagonalizes the matrixt†t: i.e.,
U†t†tU5diag$t i%, where diag$t i% is the diagonal matrix.
Then Eq.~2! becomes

G~E!5G0(
i

N

t i~E!. ~3!

Thus t i(E) is the transmission probability of each chann
i (51, . . . ,N), and the channel is regarded as an eigench
nel.

III. RESULTS AND DISCUSSION

A. Single-line wires

We first study the conductance of Al and Si wires cons
ing of a single line of atoms. The number of atoms in a w
ranges from one to eight in this paper. For the interatom
distance in the wires we adopt 5.4 a.u. for Al wires and
a.u for Si wires. The values are the corresponding distan
in bulk fcc Al and diamond-structured Si, respectively.

1. Conductance G„E…

We first present the conductance at the Fermi ene
G(EF) as a function of the wire length~Fig. 2!. The conduc-
tance depends on the wire length for both the Al and
wires. Both the wires take the maximum value of almo
3.0 G0 in the five-atom wire. Yet the variation of the con
ductance is rather different for the two elements. In
G(EF) varies by (0.2–0.6)G0 when the number of atom
increases by one. On the other hand, the correspon
change for Si wires is (0.01–0.2)G0. The conductance of the
04540
l

are
In
-

or

o
es

l

ry

l
n-

-

ic
4
es

y

i
t

,

ng

Si wires is less sensitive to the length of the wires. The ori
of this behavior is discussed later in terms of the elect
states of the wires.

It is interesting to see the conductanceG(E) for an inci-
dent electron with different energy. Figure 3 shows the c
ductanceG(E) as a function of the incident electron energ
E for two Al wires consisting of three and five atoms. Belo
E526 eV the conductance is negligible for both wires. T
conductance increases rapidly aroundE526 eV and satu-
rates toG51G0 with a slight oscillation. This oscillatory
behavior of the conductance is enhanced for longer wires
is shown in Fig. 3, and is interpreted in terms of the co
mensurability between the electron wavelength and the e
trode distance.10,25 The conductance is unity untilE reaches
EF and then increases to 3G0. Again, the conductance osci
lates aroundG53G0 until E reaches 3 eV. ThenG(E) in-
creases monotonically.

G(E) of the three- and five-atom Si wires is shown in Fi
4. The conductance is negligible belowE5210 eV and then
becomes almost constant with the value ofG51G0 from
E5210 to 22 eV. Then it increases to 3G0 whenE522
to 3 eV. In contrast to the Al wires, there is a dip in th
conductance aroundE522 eV.26 The dip for the five-atom
wire is larger than that for the three-atom wire.

FIG. 2. The conductance at the Fermi energyG(EF) of Al and
Si single-line straight wires consisting of one to eight atoms. T
abscissa, the distance between the left and right electrodes,
measure of the length of the wire consisting of one to eight ato

FIG. 3. The conductance of three- and five-atom single-l
straight Al wires as a function of incident electron energy. T
Fermi energyEF is at E50.
1-3
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2. Eigenchannel analysis of G„E…

BecauseG(E) reflects the total transmission, which is th
sum of contributions from all channels, the physical origin
the conductance and its detailed features still remain unc
We thus performed eigenchannel analysis of the conducta
for each incident energy and then clarified the relation
tween the eigenchannels and the electron states of infi
length wires.

Figure 5 shows the transmission probabilityt i(E) for
each eigenchanneli of ~a! three-atom and~b! five-atom Al
wires as a function of the incident energyE. The first channel
opens atE526 eV. The second and third channels are d
generate and open just below the Fermi energy. The tr
mission probabilities of these channels rapidly saturate
t i;1 and oscillate after they open. Thus the number
channels open at the Fermi energy is three.

Opening of the eigenchannels is closely related to
electron states of the infinite-length wire shown in Fig. 5~c!:

FIG. 4. The conductance of three- and five-atom single-l
straight Si wires as a function of incident electron energy.
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The energy at which the first channel starts to open co
sponds to the bottom of thes band. Thes band consists of
s and pz orbitals of Al. On the other hand, the energy
which the second and third channels open corresponds to
bottom of thep bands consisting of thepx andpy orbitals.

These correspondences are visible in Fig. 6 where
eigenchannel wave functions atEF are shown. The eigen
channel wave functionsf i are obtained by unitary transfor
mation of the wave functions~1! by using the unitary matrix
U5(uki), which diagonalizes the product of the transm
sion matricest†t:13

f i5(
k

ukiCk . ~4!

It is clear that the three open channels atEF have the char-
acters ofs andp states, respectively.

The same analyses were done for the Si wires. Figure
the eigenchannel transmission probability of~a! three- and
~b! five-atom Si wires. The energy bands of the infinit
length Si wire are also shown in Fig. 7~c!. There are three
open channels atEF . The first channel, which hass charac-
ter, starts to open atE5210 eV. In contrast to the Al wires
this has a dip in transmission aroundE522 eV. The second
and third channels, which havep character, are degenera
and open atE522 eV. The energy where the dip appea
corresponds to the energy gap of thes band of the infinite-
length wire as seen in Fig. 7~c!. It is noteworthy that a gap in
the energy band causes a transmission dip only in the co
sponding channel: The first channel of the Si wire has a
aroundE522 eV, whereas the second and third chann
are unaffected.

e

l

e

FIG. 5. The eigenchanne
transmission of the~a! three- and
~b! five-atom Al wires. Each line
representst i in Eq. ~3! as a func-
tion of the incident energy.~c! The
energy-band structure of th
infinite-length Al wire. The Fermi
energy is atE50.
1-4
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DENSITY-FUNCTIONAL CALCULATIONS AND . . . PHYSICAL REVIEW B69, 045401 ~2004!
We are now in position to discuss the origin of the co
ductance behaviors of the Al and Si wires. The number
open channels is three at the Fermi energy for both wi
This sets the upper bound of the conductance, leading to
maximum conductance 3G0.

The dip inG(E) of the Si wire belowEF ~Fig. 4! origi-
nates from a dip in the first channel in Figs. 7~a! and 7~b!.
The width of the dip becomes narrower as the length of
wire increases, because the period of the resonant peaks
shorter for a longer wire. For the three-atom Si wire the

FIG. 6. Contour plots of the squared eigenchannel wave fu
tions of a three-atom Al wire at the Fermi energy.~a! first and~b!
second~third! channels. The left panel is in thexy plane cutting the
center atom. The right panel is in the plane that contains the w
The electron is incident from the left. Black circles indicate t
atomic positions. Vertical dotted lines are the edges of the jelli
electrodes.
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aroundE522 eV crossesEF , whereas the dip in the five
atom Si wire is narrower and the transmission recovers
t i51 at EF . On the other hand, the second and third ch
nels are almost fully open atEF for all wire lengths. Conse-
quently, only the first channel is responsible for the variat
of the conductance as the wire length changes.

On the other hand, the first channel in the Al wire is ful
open atEF irrespective of the wire length, and the other tw
are partially open. For a longer wire, the slope of the tra
mission probability is steeper due to less contribution of
evanescent waves. Also, oscillatory behaviors are enhan
owing to the increasing number of electron wavelengths t
satisfy the commensurability condition with the wire lengt
Hence the transmission probability of the channel wh
opens atEF is sensitive to structural changes such as the w
length. In addition, the two degenerate~second and third!
channels contribute to the conductance change. Therefo
maximum variation of;2G0 could be possible. That is why
the conductance of the Al wire varies more than that of the
wire with changing wire length.

Correlation between the conductance and the elec
states is generally expected. Actually, Mozoset al.26 calcu-
lated the conductance of Si wires, found the conductance
below EF , and interpreted it in terms of a gap in the ba
structure of the infinite-length wire. As is clear in Fig.
however, the calculated transmission probabilities for eig
channels are sensitive to the incident energy and to the s
tural variation of finite-length wires. The transmission pro
abilities of eigenchannels are the eigenvalues of the prod
of the transmission matricest†t. Among the eigenvalues
most of them have negligible values except for a few op
channels. Hence, only after eigenchannel decomposition

c-

e.
l

e

FIG. 7. The eigenchanne
transmission of the~a! three- and
~b! five-atom Si wires. Each line
representst i in Eq. ~3! as a func-
tion of the incident energy.~c! The
energy-band structure of th
infinite-length Si wire. The Fermi
energy is atE50.
1-5
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the correspondence between the states in the bands an
open channels in the wires be clarified.

B. Effects of stretching wires

As discussed in the previous subsection, the eigencha
transmission of a finite-length atomic wire between jelliu
electrodes is closely related to the band structure of
infinite-length wire. We therefore expect that structural d
formations of the wire induce changes in the electron sta
lead to variations in the eigenchannel transmission,
eventually cause variations in the conductance. It is thus
ful to know the electron states of an infinite-length wire f
predicting the conductance and its change upon deforma
In this subsection, we elucidate generic features of
nanowires and then discuss the observed increase5,7 in the
conductance upon stretching.

We focus on the conductance of the five-atom single-l
Al wire. In the previous subsection we set the Al-Al distan
d in the wire to be 5.4 a.u. We now change it in the range
d54.6–7.4 a.u. for comparison. The value 4.6 a.u. is
optimized geometry for an infinite-length single-line A
wire.27

Figure 8 shows the conductance and the eigencha
transmission at the Fermi energy as a function of the Al
distance. The conductance of the shortest wire (d54.6 a.u.!
is 1.9G0, which is substantially smaller than the value 3.0G0
for the stretched wire (d55.4 a.u.! discussed in the previou
subsection. Stretching the Al-Al distance (d.5.4 a.u.! de-
creases the conductance. The transmission probabilitie
the three channels increase when the Al-Al distance
stretched from 4.6 a.u. Upon further stretching (d.5.4 a.u.!,
the second and third channels close more rapidly than
first channel.

In Fig. 9, the eigenchannel transmission of the shor
wire and the energy-band structure of the correspond
infinite-length wire are shown. The number of open chann
is found to be three atEF . The decrease in the conductan
of the shortest wire that we have found is caused mainly

FIG. 8. The conductance and the eigenchannel transmission
five-atom single-line Al wire at the Fermi energy as a function
the Al-Al distance. The solid line with circles, the dashed line w
squares, and the dotted line with triangles denote the total con
tance, and the first and second~the third! eigenchannel transmissio
probabilities, respectively. The second and third channels are
generate.
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the dip in transmission of the first channel. The first chan
corresponds to thes band, which has an energy gap arou
EF . Thus the transmission of the first eigenchannel
creases tot1;0.3. On the other hand, it is found that th
transmission probabilities of the second and third chann
are t2 ,t3;0.8. This amounts to the total conductance
1.9G0.

The increase in the conductance upon stretching, or m
generally the change in the conductance upon deformatio
wires, is explained naturally by the combination of th
changes of the energy-band structure of an infinite-len
wire and the corresponding eigenchannel transmission p
abilities.

In order to further explain this point, let us consider t
band structures of infinite-length single-line wires with ones
and threep orbitals~Fig. 10!. When atoms come together, th
s and pz orbitals in isolated atoms constitute correspond
‘‘ s’’ and ‘‘ pz’’ bands30 or mix substantially and forms
bands, whereas thepx andpy orbitals constitute correspond
ing p bands. For a large Al-Al distance, overlaps of t
adjacent orbitals and thus the band widths are small. W
the widths of the ‘‘s’’ and ‘‘ pz’’ bands are small compared
with the difference between thes andpz levels, the ‘‘s’’ and
‘‘ pz’’ bands do not cross. Consequently, there is a gap
tween the top of the ‘‘s’’ band and the bottom of the ‘‘pz’’
band@Fig. 10~a!#. As the bond length decreases, the overla
of the orbitals become larger so that the bandwidths incre
At a certain distance, the top of the ‘‘s’’ band and the bottom
of the ‘‘pz’’ band touch and the gap disappears@Fig. 10~b!#.
When the bond length decreases further, the ‘‘s’’ and ‘‘ pz’’
bands could cross as shown by the dashed lines in Fig. 1~c!
in the absence of the mixing. Yet actually with thes-pz mix-
ing the bands repel each other. Therefore a gap reapp
between the ‘‘s’’ and ‘‘ pz’’ bands, as shown by the solid line
in Fig. 10~c!.

f a
f

c-

e-

FIG. 9. The eigenchannel transmission and the energy-b
structure of an Al wire with a shorter bond length 4.6 a.u.
1-6
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DENSITY-FUNCTIONAL CALCULATIONS AND . . . PHYSICAL REVIEW B69, 045401 ~2004!
Based on the band structure discussed above, the ef
of wire stretching on the conductance become clear. Fo
there are three electrons per atom so that the firsts band is
completely filled. Thepx,y and ‘‘pz’’ bands are partially
filled. Although the occupation changes depending on
relative positions of thes andp levels and the bandwidth, th
Fermi energy will be located somewhere in thesepx,y bands.
For the smaller Al-Al distance in~c!, the band is similar to
that for the distance 4.6 a.u. shown in Fig. 9. Thepx,y bands
are partially filled and the ‘‘pz’’ band is empty. The Fermi
energy is located in the gap between the ‘‘s’’ and ‘‘ pz’’
bands. Thus two channels corresponding topx,y open. Fur-
ther a channel corresponding to thes-pz band will also open,
but have a dip in the transmission probability aroundEF .
Consequently, the conductance is not larger than 2G0 ~from
px,y channels! plus a small contribution from the thes-pz
channel. When the wire is stretched, the band becomes
Fig. 10~b!. The energy gap disappears. The Fermi energy
be located near the bottom of thepx,y band. This is the
situation shown in Fig. 5~c! for the Al-Al distance of 5.4 a.u.
The maximum conductance becomes 3G0 when all the chan-
nels open completely. For further elongation, the gap re
pears and the Fermi energy comes near the bottom of
‘‘ pz’’ band. In this case, the maximum conductance may
1G0 when thepx,y bands are both empty.

Thus the conductance will increase from~c! to ~b!, and
then decrease from~b! to ~a! upon stretching. It will be pos-
sible to increase or decrease the conductance just by str
ing. Stretching a wire with the shorter bond length increa
the conductance, whereas the conductance decreases
stretching the wire with a moderate bond length.

One of the striking features of the conductance of Al po
contacts is the positive slope during stretching. Based
their tight-binding calculations, Cuevaset al.6 argue that the
stretching makes the Fermi energy lie at the peak of the lo
density of states and thus increases the conductance. O
other hand, based on a DFT calculation, Kobayashiet al.

FIG. 10. Schematic illustration of the energy bands of
infinite-length single-line wire with different bond lengths. Th
bond length decreases from~a! to ~c!.
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propose that the increase in the conductance is due
straightening a bent wire during elongation.13 Our calcula-
tions along with the qualitative discussion above clarify th
the reason for the positive slope of the Al contact is the bo
stretching. The discrepancy in the conductance variation
ing the bond stretching between ours and the other DFT
culation in Ref. 13 can be understood by the difference of
initial bond length. In Ref. 13 the authors began with t
bond length 5.4 a.u., stretched the bond, and found a
crease in the conductance. This corresponds to the ch
from ~b! to ~a! in Fig. 10. On the other hand, we stretched t
bond from the shorter length 4.6 a.u. to 5.4 a.u., and found
increase in conductance, which corresponds to the cha
from ~c! to ~b!. Both of the two DFT results are naturall
explained by our qualitative analyses above.

C. Double-line wires

We next explore nanowires consisting of two straig
atomic lines parallel to each other. Each atomic line is id
tical to the single atomic line withn atoms discussed in Sec
III A. The interatomic distance in the wires and the jellium
wire distance are the same as before. A new degree of f
dom, i.e., the separations between the two parallel lines, i
introduced in these atomic wires. We try to elucidate t
effects of the separation on the conductance. Three kind

FIG. 11. The conductance of double-line wires with differe
interline separations atEF . The number of atoms in each wir
ranges from one to eight.~a! For Al the separationss are ~A! 5.0,
~B! 5.4, and~C! 6.0 a.u., respectively, and~b! for Si, they are~A!
4.0, ~B! 4.4, and~C! 5.0 a.u., respectively. The conductance of t
single-line wire is also shown for comparison.
1-7
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FIG. 12. The eigenchanne
transmission of double-line five
atom-length Al wires and the
energy-band structure of th
infinite-length Al wire. The inter-
line separations is ~a! 5.0, ~b! 5.4,
and ~c! 6.0 a.u.
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wires with different separationss are investigated. For A
wires,s55.0,5.4, and 6.0 a.u., whereas in Sis54.0,4.4, and
5.0 a.u.

The conductances of double-line wires consisting
atomic single lines of one to eight atoms are calculated at
Fermi energy for different separationss. They are shown in
Figs. 11~a! for Al and 11~b! for Si. It is clear that the con-
ductance of the double-line wire is not simply twice that
the single-line wire for both elements. For Al, the condu
tance is insensitive to the wire separation, and the dep
dence on the wire length is also reduced. In the case o
the larger the separation, the larger is the conductance fo
wire lengths. A small dependence on the wire length is
served as for the single-line wires.

Figure 12 shows the eigenchannel transmission of dou
line five-atom-length Al wires and the band structure of t
infinite-length Al wire for three separations. For Al wires, th
number of open channels is four at the Fermi energy. Th
is no energy gap around the Fermi energy, which is loca
far from the band edges. Therefore the eigenchannels h
04540
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-
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all
-

e-
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ve

no dips so that the transmission probabilities of these ch
nels are high. Although the onset energies of the chan
opening are slightly shifted by changes of the interactio
between the atomic lines, the band structure of the Al wi
around the Fermi energy is not drastically changed. Thus
conductance is relatively robust to variation of the interli
separation.

The eigenchannel transmission of double-line five-ato
length Si wires, along with the energy bands of the infini
length wire with three separations, are presented in Fig.
We have found that five channels are open atEF . Among the
five open channels of the Si wires, three of them have a
across the Fermi energy. The channels with these dips co
spond to energy gaps near or around the Fermi ene
Changing the interline separation alters the band struct
and consequently the positions of the dips shift relative to
Fermi energy. As a result, the total transmission of ea
channel is affected by widening the separation. Since eve
slight shift results in a large variation of the transmissi
1-8
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FIG. 13. The eigenchanne
transmission of double-line five
atom-length Si wires and the
energy-band structure of th
infinite-length Si wire. The inter-
line separations are~a! 4.0, ~b!
4.4, and~c! 5.0 a.u., respectively.
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probability around the dips, the conductance of the doub
line Si wires depends sensitively on the interline separat

For the Si wires, we also note that the number of ba
crossing the Fermi energy is three, whereas the numbe
open channels is five. The three channels for the bands c
ing the Fermi energy and the two channels correspondin
the energy gap make five open channels. The number of o
channels is sometimes evaluated only from the numbe
bands crossing the Fermi energy.27–29 As is demonstrated
here, however, it is necessary to include small but finite c
tributions from the channels which correspond to elect
states off the Fermi energy in order to obtain accurate p
diction of the number of open channels, especially for sh
wires.

IV. CONCLUSION

We performed first-principles calculations of the condu
tance of Al and Si atomic wires between jellium electrod
04540
-
n.
s
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ss-
to
en
of

-
n
e-
rt

-
s

using the wave-function matching method combined with
density functional theory.

We found that the conductance varies with changing w
length and takes its maximum value of 3G0 at some finite
length for single-line Al or Si atom wires. Variation of th
conductance as a function of the wire length is substanti
different for the two elements adjacent to each other in
periodic table: The Al wires show larger variations upon a
dition of a single atom than do the Si wires. The origin of t
similarity and dissimilarity between the Al and Si wires h
been unequivocally clarified by our eigenchannel analysi

We have also investigated the conductance of double-
Al and Si wires and found that the chemical differen
makes the conductance of atom wires richer: The cond
tance of the double-line Al wires has little dependence on
separation between single atom lines, whereas the con
tance of the double-line Si wires exhibits substantial var
tion with changing separation; the numbers of open chan
in the Al and Si double-line wires are different from ea
1-9
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other. We found that this interesting dissimilarity between
and Si wires is well understood in terms of the energy ba
of the corresponding infinite-length wires, once the eig
channel decomposition is performed. In particular, it is fou
that the electron states not located at the Fermi energy
tribute substantially to the eigenchannel transmission
thus the conductance.

As a remarkable example of these approaches, we c
fied the origin of the conductance increase upon stretch
which has been observed for Al wires: The energy band
wires consisting of group III or IV atoms withs andp levels
exhibit a peculiar dependence on the interatomic distan
which plays an essential role in the conductance. We emp
size that the eigenchannel analysis combined with quan
tive quantum calculations for the wave functions of the sc
p

.

re

.
C

p

p

Re
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tering electrons is a useful tool to interpret and predict
conductance of nanowires.
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